High heat PLA
Compounding with Luminy® for high heat PLA

Biobased
Reduced carbon footprint
Multiple end-of-life options
Heat resistance similar to PP, PS & ABS

The global shift towards a biobased economy has placed pressure on plastic producers to seek alternatives to their oil-based products. Until now, PLA (Poly Lactic Acid) could not be used in applications where higher heat resistance was required. However, Total Corbion PLA’s breakthrough in high heat PLA is changing the face of biobased plastics, offering plastic producers an excellent level of performance.

Unlocking bioplastic potential for durable applications
Most PLA bioplastics of the past had the major drawback that they could not withstand increased temperatures. However, Total Corbion PLA has developed a high heat solution for PLA-based bioplastics.

At the heart of this technology, you find high heat PLA compounds based on stereochemically pure lactides, a type of PLA that until recently was not commercially available. These new high heat PLA resins open up new markets for bioplastic products, including consumer electronics, high heat packaging, automotive interiors, apparel and many more. Total Corbion PLA has demonstrated that this is not just a theory by developing a range of compounds in cooperation with our PLA partners, Universities, Institutes, compounders and brand owners.

About Total Corbion PLA
Total Corbion PLA is a global technology leader in Poly Lactic Acid (PLA) and lactide monomers. PLA is a biobased and biodegradable polymer made from annually renewable resources, offering a reduced carbon footprint versus many traditional plastics. The Luminy® PLA portfolio, which includes both high heat and standard PLA grades, is an innovative material that is used in a wide range of markets from packaging to consumer goods, fibers and automotive. Total Corbion PLA, headquartered in the Netherlands, will start up a new production plant in Thailand in the second half of 2018. The company is a 50/50 joint venture between Total and Corbion.
A biobased alternative, comparable heat performance

Total Corbion PLA’s technology can replace PS, PP and ABS type materials in applications where heat performance (HDT B) is a key requirement (see Fig. 1). This higher heat performance is achieved by improving the purity of the PLA polymer backbone. The key driver behind this innovation, is adding PDLA as a nucleating agent to high heat PLA neat resin. This results in a compound that combines good heat resistance with excellent mechanical properties.

Fig. 2 and the table below show typical results of using high heat PLA neat resins in a number of sample compounds:

- **Compound A**: a general purpose compound, featuring increased heat performance without adding significant amounts of filler.
- **Compound B**: a mineral (talc) filled compound with a higher modulus, and an even higher temperature resistance than compound A.
- **Compound C**: an impact modified compound featuring an ABS type of impact resistance.
- **Compound D**: a cost optimized base compound for sheet/film extrusion. PDLA can be added separately to increase crystallization speed and optimize processing.
- **Compound E**: a general purpose compound optimized for sheet/film extrusion and thermoforming.
- **Compound K**: compliant with industrial composting requirements while maintaining good heat resistance.

Fig 1. High heat becomes a reality

<table>
<thead>
<tr>
<th>Heat performance HDT B / 0.45 MPa °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLA</td>
</tr>
<tr>
<td>HIPS</td>
</tr>
</tbody>
</table>

Fig 2. Closing the performance gap

*Developmental grades, all data is preliminary. Data was obtained by measuring IMM test bars. Total Corbion PLA does not commercially produce these PLA compounds. ** For high heat applications it is recommended to add 3-7% Luminy® PDLA D070 (nucleating agent). *** Compliance with EN13432 to be verified on actual end product.

**	**	**	**	**
Heat | ** | ** | ** |
Impact | ** | ** | ** |

© Copyright 2017 Total Corbion PLA. All rights reserved. No part of this publication may be copied, downloaded, reproduced, stored in a retrieval system or transmitted in any form by any means, electronic, mechanical photocopied, recorded or otherwise, without permission of the publisher. No representation or warranty is made as to the truth or accuracy of any data, information or opinions contained herein or as to their suitability for any purpose, condition or application. None of the data, information or opinions herein may be relied upon for any purpose or reason. Total Corbion PLA disclaims any liability, damages, losses or other consequences suffered or incurred in connection with the use of the data, information or opinions contained herein. In addition, nothing contained herein shall be construed as a recommendation to use any products in conflict with existing patents covering any material or its use. TOTAL is a trademark owned and registered by Total S.A., used under license by Total Corbion PLA BV; CORBION is a trademark owned and registered by CORBION N.V., used under license by Total Corbion PLA BV.